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Abstract

A framework is derived for developing constitutive laws for engineering materials. The framework is based on

physically motivated assumptions on the mechanical and thermal behaviour of plastically deformed and damaged

materials. These assumptions are the starting point in a derivation of the relevant thermodynamic quantities. The

procedure reveals important cross-dependencies that have to be considered while developing constitutive equations. A

major result of this study is that both deterioration (increase of damage) and healing (decrease of damage) can be

modelled in an integrated manner using the same constitutive law. For greater clarity the description is limited to small

strain and isotropic behaviour.
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1. Introduction

With continuum damage mechanics (CDM), fracture is viewed as a process developing locally within a

continuum. The field originated with the seminal paper by Kachanov (1958) dealing with brittle creep

rupture. To model this process, Kachanov introduces a field variable w denoted continuity or soundness.

With the initial value w ¼ 1 for a virgin material w decreases according to a constitutive law. When w ¼ 0

fracture is stated to occur. Odqvist and Hult (1962) show that Kachanov’s concept implies the linear life-

fraction rule of Robinson (1952). Moreover, with A as the load bearing area in uniaxial tension, Odqvist
and Hult (1962) interpret wA as the remaining load bearing area. They also denote 1� w ‘‘damage’’.

Rabotnov (1963) extends Kachanovs idea by incorporating the effect of damage on the strain rate in creep.

Rabotnov also changes variable to x � 1� w and gives a very influential interpretation of x as the area

fraction of cavities in a cross section of a uniaxially stressed specimen. Jansson and Stigh (1985) show that

this interpretation is misleading if taken literally. Furthermore, they show that the phenomenological
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concept of Kachanov–Rabotnov is consistent with results from micromechanical modelling. Lemaitre

(1972) extends the phenomenological models of creep fracture to models for fatigue. In a paper dealing with

the development of damage ahead of a crack tip, Janson and Hult (1977) named the field ‘‘Continuum

Damage Mechanics’’.
In the 1980s Chaboche, Lemaitre and co-workers develop methods to derive constitutive laws based on a

thermodynamic framework and a principle of strain equivalence, cf. e.g. Lemaitre (1985) and Lemaitre and

Chaboche (1990). Although the precise phrasing of the principle varies somewhat, the basic idea is that the

damaged material behaves as the virgin material if this material is acted upon with an effective stress, ~r; this
stress being an amplified version of the Cauchy stress, r. With a scalar damage variable, x, ~r is defined

through
r ¼ ð1� xÞ~r: ð1Þ
The starting point in these theories is the identification of the state variables and a statement of the form

of the Helmholtz free energy per unit volume; in the sequel denoted the free energy. With f e and f p

denoting the elastic and plastic parts of the free energy respectively, two different forms are today, almost

exclusively, in use
f ð�e; p;xÞ ¼ ð1� xÞf eð�eÞ þ f pðpÞ; ð2Þ
used by e.g. Lemaitre and Chaboche (1990) and
f ð�e; p;xÞ ¼ ð1� xÞ½f eð�eÞ þ f pðpÞ�; ð3Þ
used by e.g. Ju (1989). Here, �e and p denote the elastic strain tensor and the internal variables used to

model the plastic deformation of the material, respectively. A simple choice for p is to use the accumulated

von Mises-effective plastic strain though we will, for generality, keep the symbol p.

Both forms of the free energy yield the same structure for the Cauchy stress, i.e. Eq. (1). However, the

‘‘stresses’’ conjugated to plasticity and damage differ; i.e. the plastic stress, defined by P � qof =op, and the

damage stress, defined by X ¼ qof =ox, differ. With Eq. (2), the plastic stress is given by qof p=op and with

Eq. (3) it is given by P ¼ qð1� xÞof p=op ¼ ð1� xÞeP. Thus, the last form yields the plastic stress in an
effective form, eP. The damage stress takes the form �qf e with Eq. (2) and �qðf e þ f pÞ with Eq. (3). Thus,

with Eq. (2) only the energy associated with elastic strain ‘‘drives’’ damage while both forms of the energy

contributes if Eq. (3) is used, cf. Olsson and Ristinmaa (2003).

In this paper we will derive a framework for developing constitutive laws starting with physically

motivated assumptions on the mechanical and thermal properties of plastically deformed and damaged

materials. From these assumptions we will derive the form of the free energy. In order to gain clarity, only

small deformations and isotropy are considered. Thus, the density, q, at a material point is considered to be

a constant.
The paper is organized in the following way; first an introduction to relevant parts of the thermody-

namics of irreversible processes is given, then results for thermoelastic materials are summarized. The main

part of the paper is devoted to extensions of this material model to plasticity and damage. Two simple

examples are provided. These examples show some of the capabilities of the present framework. Some

further interpretations are offered in the concluding section.
2. Thermodynamic background

In this section a brief introduction is given to thermodynamics of irreversible processes relevant for the

present purpose. There is a vast amount of literature available and we do not attempt to give a review of the
field. For a general treatise we refer to Kondepudi and Prigogine (1998) and for more specialized works to



Fig. 1. Body V with surface oV and outer normal n. On the surface traction vector t and heat flux vector h act. The material points have

velocity vector v.
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Maugin (1992) and Nguyen (2000). The present account differs somewhat from these in order to provide a

possibility to obtain an intuitive interpretation to the concept of dissipation.

A body, V , is considered, cf. Fig. 1. On the surface, oV , with outer unit normal vector, n, a traction

vector t acts. During a time interval, Dt, the body is taken through a process which is slow enough to

guaranty that the state is always locally well-defined. This is known as the assumption of local equilibrium,

cf. e.g. Kondepudi and Prigogine (1998). During the process, heat is allowed to pass through the surface;

the heat flux vector is denoted h. No other sources of change of energy are considered. The change in
(internal) energy, U , is then given by the sum of the work done by the traction and the heat received from

the environment,
DU ¼
Z
Dt

Z
oV

tivi dðoV Þ
�

�
Z
oV

hini dðoV Þ
�
dt; ð4Þ
where, v is the velocity vector. Noting that the time interval is arbitrary we can identify the expression in the

block parenthesis as the rate of change of energy. Using Cauchy’s formula, ti ¼ rjinj, the divergence the-

orem and the principle of local equilibrium we arrive at,
Z
V
q _udV ¼

Z
V
ðrjiviÞ; j dV �

Z
V
hi;i dV ; ð5Þ
where u is the (internal) energy per unit mass. With the symmetric strain rate tensor _�ij � ð1=2Þðvi;j þ vj;iÞ,
and the equilibrium equations rji;j ¼ 0 and rij ¼ rji, we can now identify the rate of work per unit volume

q _w � rij _�ij and the heat supply per unit volume q _q � �hi;i. Noting that the choice of volume element is

arbitrary by the principle of local equilibrium we arrive at,
_u ¼ _wþ _q: ð6Þ
The first law of thermodynamics states that the energy is determined solely by the state of the material.

With the restrictions imposed here, the rate of change of u is given by Eq. (6).

For the purpose of developing isotropic constitutive laws, the rate of work is conveniently split into two

parts by splitting the stress and strain rate tensors in volumetric and deviatoric parts, respectively
q _w ¼ sij _eij þ rm _�v: ð7Þ

where, sij � rij � dijrm and _eij � _�ij � dij _�v=3 are the deviatoric stress and strain rate tensors, respectively.

Furthermore, rm ¼ rkk=3 and _�v ¼ _�kk are the mean stress and the volumetric strain rate, respectively.

The second law of thermodynamics states that the internal production of entropy is never negative.
Thus, in the process
DS þ
Z
Dt

Z
oV

hini
T

dðoV Þ
� �

dtP 0: ð8Þ
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Here, DS denotes the total change of entropy of the body and T the absolute temperature. Using the

principle of local equilibrium, the rate of change of entropy can be written as the integral of the rate of

entropy production per unit volume, q_s, over the volume,
Z
Dt

Z
V
q_sdV

"
þ
Z
V

hi
T

� �
; i

dV

#
dtP 0; ð9Þ
where the divergence theorem has been used on the volume integral of Eq. (8). Noting that both the time

interval and the part of the body considered are arbitrary, we arrive at the local form of the second law,
q_sþ ðhi=T Þ; i P 0. Expanding the partial derivative yields
q_s� q _q
T

� hiT; i
T 2

P 0; ð10Þ
which is known as the Clausius–Duhem inequality.

For an imagined reversible process leading to the same state as the real one, a special rate of heat, q _q0, is
identified from Eq. (10). For an ‘‘infinitely’’ slow reversible process ðh ¼ 0Þ the inequality of Eq. (10) is

changed to an equality. Thus,
_q0 ¼ T _s: ð11Þ
With this procedure a reversible rate of heat is associated with any process without reverting to classical

thermodynamics, i.e. claiming that every irreversible transformation that occurs in nature can also be

achieved through a reversible process.

Since the imagined reversible process and the actual process lead to the same state, a corresponding

reversible rate of work, _w0, is identified through the first law, Eq. (6)
ð _u ¼Þ _w0 þ _q0 ¼ _wþ _q: ð12Þ
Equations (11) and (12) are visualized in Fig. 2.

We now introduce the dissipation per unit mass, _d, through the difference between the rates of work for

the actual process and for the associated reversible process,
_d � _w� _w0 ¼ _q0 � _q; ð13Þ
where the last equality follows from Eq. (12). With Eqs. (11)–(13), Eq. (10) is rewritten as the dissipation

inequality,
q _d � hi
T
T; i P 0: ð14Þ
Fig. 2. Visualization of relations between different rates associated with the real and the reversible processes.
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Almost exclusively, Fourier’s law of heat conduction is used in constitutive modelling of engineering

materials, i.e. hi ¼ �kT; i with k > 0. This guarantees that the second term of Eq. (14) gives a non-negative

contribution to the dissipation inequality. It thus remains to develop constitutive laws yielding
_dP 0: ð15Þ
Thus, Clausius–Duhem’s inequality reduces to the statement that the rate of work per unit volume is never

less than the associated reversible rate of work, cf. Eq. (13). The relations between the reversible and actual

processes are visualized in Fig. 2.

When considering strain-based descriptions of non-isothermal processes, it is convenient to use the
Helmholtz free energy per unit mass, f , instead of u. The free energy is defined by
f � u� sT ; ð16Þ
and is thus a state function. Taking the time derivative and using Eqs. (6), (11) and (13) we arrive at
_f ¼ _w0 � s _T : ð17Þ
Thus, the free energy can be interpreted as the energy available to do work in an isothermal reversible

process. Due to dissipation, the rate of work is never less than the rate of free energy in an isothermal
process, cf. Fig. 2.

In Section 3, we will use the property that f and s are state functions and introduce principles of thermal

and mechanical equivalence to derive the possible forms of f and s consistent with these principles.
3. Constitutive models

Macroscopically, plasticity and damage affect the response of a body in different ways. As an example,

consider a load cycle where the external load is first increased from zero and then decreased to zero, cf. Fig.

3. In this load cycle, plasticity is manifested through a permanent deformation while damage shows up as a

decrease of the elastic moduli upon unloading. On a micromechanical scale, many different mechanisms are
responsible for plasticity and damage. For example, crystal slip by moving dislocations yields a permanent

set and is modelled as plasticity; nucleation and growth of microcracks and voids lead to a decrease of the

moduli and are modelled as damage.

In this section, internal state variables reflecting inelastic deformation are introduced. This is done in two

steps: first a standard model for isotropic thermoelastic materials is modified to allow for plastic defor-

mation by introducing state variables, p, reflecting the state of internal rearrangement due to plastic

deformation. In the second step, this model is modified to allow for damage by introducing state variables,

x, reflecting the state of internal deterioration. It should be noted that both p and x can be considered as
collections of internal, generally tensorial, state variables. Thus, the representation is general and includes
plasticity

damage

p

plasticity and damage

εε

σ

Fig. 3. Load cycle indicating the different manifestations of plasticity and damage.
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the possibility to use only one scalar for each of the mechanisms. We will refrain from studying specific

forms of the evolution equations for p and x and only indicate possible forms consistent with the dissi-

pation inequality, Eq. (15). The specific forms of these equations determine if the final constitutive equa-

tions model time-independent or time-dependent deformation.
Using the following set of state variables, ee, �ev, T , p and x, the rate of the free energy is given by
q _f ¼ q
of
oee

� _ee þ q
of
o�ev

_�ev þ q
of
oT

_T þ q
of
op

� _pþ q
of
ox

� _x: ð18Þ
The rate of reversible work and the entropy are identified by comparison with Eq. (17)
q _w0 ¼ q
of
oee

� _ee þ q
of
o�ev

_�ev þ q
of
op

� _pþ q
of
ox

� _x; ð19Þ
and
s ¼ � of
oT

: ð20Þ
The reversible rate of work is now conveniently defined by
q _w0 � s � _ee þ rm _�
e
v þ P � _pþX � _x; ð21Þ
where P and X are the ‘‘plastic stress’’ and ‘‘damage stress’’ conjugated to p and x, respectively. Identi-

fication with Eq. (19) yields
s ¼ q
of
oee

; rm ¼ q
of
o�ev

; P ¼ q
of
op

; X ¼ q
of
ox

: ð22a;b;c;dÞ
The associated rate of dissipation is derived from Eqs. (7), (13) and (21)
q _d ¼ s � _e
�

� _ee
�
þ rm _�v

�
� _�ev

�
� P � _p�X � _x: ð23Þ
Equation (20) yields the rate of entropy
q_s ¼ �q
o2f
oToee

� _ee � q
o2f
oTo�ev

_�ev þ q
os
oT

_T � q
o2f
oTop

� _p� q
o2f
oTox

� _x; ð24Þ
and with Eqs. (22a–d) it follows
q
os
oee

¼ � os

oT
; q

os
o�ev

¼ � orm

oT
; ð25a;bÞ
q
os
op

¼ � oP

oT
; q

os
ox

¼ � oX
oT

: ð25c;dÞ
Thus, the entropy is closely related to the thermal dependence of the stresses.
Now, the reversible rate of heat is given by Eqs. (11), (24) and (25)
q _q0 ¼ �T
os

oT
� _ee � T

orm

oT
_�ev þ qT

os
oT

_T � T
oP

oT
� _p� T

oX
oT

� _x: ð26Þ
The equations of the start of this section are the starting point for the development of constitutive laws in

the remainder of this section.
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3.1. Model for thermoelastic material

A thermoelastic material is a reversible model in the sense that _d ¼ 0. One should however be careful

when considering non-isothermal inhomogeneous deformation of a body of thermoelastic material. Such
loading generally involves heat flow and is thus an irreversible process although the (mechanical) dissipation
_d is zero, cf. the second term of Eq. (14).

For the thermoelastic model, p � x � 0 and the classical isotropic thermoelastic model reads
1 D

expans
s ¼ 2Gee; rm ¼ K �ev
�

� �Tv
�
; ð27a;bÞ
where
�Tv ðT Þ ¼ avðT � TrÞ; ð27cÞ
is the volumetric thermal strain and Tr is a reference temperature. Moreover, G, K and av are the constant

shear modulus, bulk modulus and coefficient of thermal expansion respectively. 1

Equations (27a–c) yield
os

oT
¼ 0;

orm

oT
¼ �Kav; ð28a; bÞ
and with Eqs. (25a,b) we conclude that the entropy is independent of the deviatoric part of the elastic strain.

The dependence of the final state variable, T , is given by the heat capacity. Since _d ¼ 0, the rate of heat

equals the reversible rate of heat which, in turn, is given by the rate of entropy. Thus, with Eqs. (11), (26)

and (28a,b)
q _q ¼ TKav _�ev þ qT
os
oT

_T : ð29Þ
From the last part we identify the heat capacity
cev � T
os
oT

: ð30Þ
Now, since s is independent of ee, cev also must be independent of the deviatoric part of the elastic strain.

Furthermore, it is also independent of �ev. To see this, formulate
q
ocev
o�ev

¼ o

o�ev
qT

os
oT

� �
¼ T

o

oT
q
os
o�ev

� �
¼ �T

o

oT
ðKavÞ ¼ 0; ð31Þ
where Eqs. (25b) and (28b) are used. Thus, at most cev ¼ cevðT Þ.
We now have all derivatives of the entropy, cf. Eqs. (25a,b) and (30). These equations can be integrated

with Eqs. (28a,b). To distinguish this form of the entropy from the subsequent forms, we denote it se. With

the arbitrary integration constant determined from seð0; TrÞ ¼ 0, integration yields
qseð�ev; T Þ ¼ Kav�ev þ q
Z T

Tr

cevðhÞ
h

dh: ð32Þ
All relevant derivatives of f are now formulated, cf. Eqs. (20) and (22a,b). To distinguish this form of the

free energy from the subsequent forms it is denoted f e. Integration yields
efined in this way, the coefficient of thermal expansion equals three times the conventional linear coefficient of thermal

ion.
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qf e ee; �ev; T
� �

¼ Gee � ee þ 1

2
K�ev �ev

�
� 2�Tv

�
� q

Z T

Tr

T � h
h

cevðhÞdh; ð33Þ
where the arbitrary integration constant is chosen by f eð0; 0; TrÞ ¼ 0. The middle term might need some

extra attention; it might appear more intuitive to get Kð�ev � �Tv Þ
2
=2 which gives no contribution to the free

energy if the volumetric thermal strain equals the volumetric elastic strain, or equivalently, if rm ¼ 0. This

form is indeed found in some formulations. As is easily verified, it is in error.
3.2. Framework for models of thermoelastoplastic material

With classical models of plasticity, it is assumed that the material reacts as the elastic, virgin material if

the material is unloaded. Thus, effects of e.g. elastic spring back of dislocation loops and formation of voids

are neglected. The assumption is usually used only in its mechanical sense, i.e. in terms of stress and strain.

This is however unsatisfactorily in a thermodynamic setting. For instance, in the often assumed isothermal

case, the energy conversion is dominated by the rate of heat. To see this, study the results of the previous
section. The heat, Eq. (29), is linear in the elastic strain while the work, Eq. (21), is quadratic. Thus, the

energy conversion in an isothermal elastic loading is dominated by the heat.

We will here study the effects of extending the mechanical assumption above to its thermal counterpart.

Thus, we will assume that the material acts, both mechanically and thermally, as the virgin elastic material

if the state of plastic rearrangement, modelled with p, is constant. (Throughout this section, x is set to zero.)

For a moment, assume that the state is given by the alternative set of state variables, s, rm, T , and p. For

the model to react mechanically as the virgin elastoplastic model when _p ¼ 0 the following relations shall

hold:
oeðijÞ
osðijÞ

¼ 1

2G
;

oeij
orm

¼ 0;
oeij
oT

¼ 0; ð34a;b;cÞ

o�v
osij

¼ 0;
o�v
orm

¼ 1

K
;

o�v
oT

¼ av; ð34d;e;fÞ
independent of the level of p. (No summation shall be performed on repeated indices in parentheses.)

Integration yields
eðs; pÞ ¼ eeðsÞ þ epðpÞ; �vðrm; T ; pÞ ¼ �evðrm; T Þ þ �pvðpÞ: ð35a;bÞ
Thus, the strain splits up in two parts; one thermoelastic, which equals the one for the pure thermoelastic
material of the previous section, and one plastic part which is independent of stress and temperature. This

result, previously noted by Kestin and Rice (1970), is a result of using constant values of K, G and av and
assuming that, at a reference state with r ¼ 0 and T ¼ Tr, the values of � and p vanish.

It is now convenient to define two ‘‘kinematic’’ relations between the internal state variable p and the

plastic strain, viz.
_ep � HeðpÞ � _p; _�pv � H�ðpÞ � _p: ð36a;bÞ
Due to the unique relation between r, �e and T , given by Eqs. (27a–c), the state may equally be charac-
terized by the state variables ee, �ev, T , and p. With these state variables, the rate of dissipation is given by

Eq. (23) with Eqs. (35) and (36a,b)
_
qd ¼ P � _p; ð37aÞ
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where
P � s �He þ rmH
� � P; ð37bÞ
defines a ‘‘plastic dissipation stress’’. A method to develop thermodynamically consistent models, is to

assume the existence of a dissipation potential F , convex in P, from which the rate of p is calculated. That
is, with _kP 0, _p ¼ _koF =oP, cf. Generalized Standard Materials (Nguyen, 2000).

Now, partition the free energy and the entropy according to
f ¼ f e þ f p; s ¼ se þ sp; ð38a;bÞ

where se and f e are given by Eqs. (32) and (33) respectively. We will now show that sp is, at most, a function

of p and that f p is, at most, a function of T and p. To show this, note that if the model is to degenerate into

the thermoelastic model in the manner described above, _q must, for _p ¼ 0, be identical to the rate of heat of

the thermoelastic model. As shown in Eq. (37a), _p ¼ 0 gives _d ¼ 0, thus, by Eq. (13) it suffices to assure that

for _p ¼ 0, _q0 equals the rate of heat of the thermoelastic model. With Eqs. (11), (29), (30) and (38b)
ðq _q0 ¼ÞqT oðse þ spÞ
oee

� _ee þ qT
oðse þ spÞ

o�ev
_�ev þ qT

oðse þ spÞ
oT

_T ¼ TKav _�ev þ qcev _T : ð39Þ
The equality holds if the plastic part of the entropy is, at most, a function of p, i.e. sp ¼ spðpÞ. In order to

study the possible forms of f p, establish
q _f p ¼ P � _p� qsp _T ; ð40Þ

where Eqs. (17), (21) and (38b) have been used. This equation immediately shows that, at most,

f p ¼ f pðp; T Þ. The possible forms of the plastic stress can now be examined. By the results above and

Eq. (22c), at most, P ¼ Pðp; T Þ. Moreover, by the results above and Eq. (25c), P is, at most, linearly

dependent on the temperature. Thus, the most general form is given by
P ¼ BpðpÞ � bpðpÞðT � TrÞ; ð41Þ

where the functions BpðpÞ and bpðpÞ have to be determined by comparisons with e.g. experiments or

simulations.
There is a close connection between the plastic part of the entropy and the thermal dependence of the

plastic stress. To see this, formulate
q
osp

op
¼ � oP

oT
¼ bp; ð42Þ
where Eqs. (25c), (38b) and (41) have been used. Integration gives
qspðpÞ ¼
Z p

0

bpðp̂Þdp̂; ð43Þ
where the integration constant is chosen by spð0Þ ¼ 0. For completeness, the rate of heat is written
q _q ¼ TKav _�ev þ qcev _T þ Tbp � _p�P � _p ð44Þ

where Eqs. (13), (26), (27) and (37a) have been used. Thus, the present assumptions yield a heat capacity

unaffected by plastic strain. Bever et al. (1973) reviews a large number of experiments where the heat

capacity is measured for annealed and heavily plastically deformed metallic specimens. They conclude that

the difference in heat capacity is always less than 1% and often less than the sensitivity of the recording

technique. Thus, the result of the present assumptions is in accordance with experiments.

An interesting deduction from Eqs. (41) and (43) is that, with temperature independent plastic stress,
plastic deformation is not associated with a permanent change of the entropy. The fact that a model is

unable to produce a permanent change of entropy is not necessarily a reason to reject the model. However,
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it limits the modelling capabilities. In order to elaborate, consider an isothermal loading sequence where the

stress is varied from zero to a maximum and then back to zero again and producing plastic deformation, cf.

Fig. 3. With bp � 0, both Dsp and Dse equal zero and thus Ds ¼ 0. In Eq. (44) only the last term, equal to the

rate of dissipation contributes to the heat. Thus, all dissipated energy is ‘‘given away’’ to the environment.
With bp 6¼ 0, the dissipation does not equal the heat.

The plastic part of the free energy is now derived by integrating Eqs. (20) and (22c) with Eqs. (41) and

(43). The result is
qf pðT ; pÞ ¼
Z p

0

Bpðp̂Þdp̂� ðT � TrÞ
Z p

0

bpðp̂Þdp̂; ð45Þ
where the integration constant is set by choosing f pðTr; 0Þ ¼ 0.

We conclude this section by noting that with _p ¼ 0, _� ¼ _�e by mechanical degeneration and _s ¼ _se by
thermal degeneration. However, for this case, _f 6¼ _f e in general. This follows by the form of the rate of

plastic free energy, cf. Eq. (40), which shows that, for this case, f p varies linearly with the temperature and
_f 6¼ _f e.

3.3. Framework for material models of damaged material

Creation, growth and coalescence of microscopic cracks and voids are frequently identified in the

fracture process of solids. At very high temperatures, above about half the homologous melting temper-

ature of metals, grain boundary voids form. This mechanism is identified as a major life limiting mechanism

for e.g. turbine blades in high-performance jet engines. At moderate temperatures, plastic deformation

induces voids at notches and crack tips in ductile solids. These voids coalesce and form a crack surface,
thus, limiting the load bearing capacity. Microscopic cracks are also identified as a major mechanism for

fracture by e.g. fatigue in brittle composites. Microscopic cracks and voids may also heal by subjecting the

material to compressive stress, high temperature or a combination. Sintering is indeed used as a life-pro-

longing process for military jet-engines. Thus, a general theory for CDM should facilitate modelling of the

effects of the processes of nucleation, growth, coalescence and healing of microscopic cracks and voids by

stress, plasticity and thermally driven mechanisms.

Generalizing the original ideas of Kachanov (1958), an effective symmetric stress tensor, ~r, is defined to

be given by a linear transformation of the homogenized stress tensor,
rij ¼ Nr
ijklðxÞ~rkl: ð46Þ
Here, the fourth-order integrity tensor Nr is a generalization of the Kachanov integrity function w ¼ 1� x,
cf. Eq. (1). The integrity is defined to be a function of the damage variables only, thus Nr ¼ NrðxÞ. The
interpretation of the integrity tensor is immediate: if some components of Nr equal zero, the material point
has lost its capacity to carry load in a certain direction; e.g., if N r

11kl ¼ 0 the model has lost its capacity to

support load in the x1-direction. For a virgin material, x ¼ 0 and the effective stress equals the homoge-

nized stress, thus N r
ijklð0Þ ¼ ðdikdjl þ dildjkÞ=2. During a loading history, the components of x may vary,

both increase; known as a deteriorating process and decrease; known as a healing process. It is reasonable

to assume that the components of Nr are monotonically decreasing functions of the components of x,

although this condition is not explicitly applied in the further development.

For models exhibiting isotropic behaviour, Nr must be an isotropic fourth-order tensor. Generally, the

Cartesian components of an isotropic fourth-order tensor is given by Nr
ijkl ¼ cdijdkl þ ddikdjl þ edildjk where

cðxÞ, dðxÞ and eðxÞ are three independent scalar functions. By use of the symmetries of the homogenized

and effective stress tensors, Nr can be replaced by two scalar integrity functions. Thus,
sij ¼ NGðxÞ~sij; rm ¼ NKðxÞ~rm: ð47a;bÞ
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Hence, at most two independent scalar integrity functions can be introduced in an isotropic model. This

conclusion can be compared to the formulation of Cauvin and Testa (1999) who conclude that only two

scalar damage variables can be used in an isotropic theory. Thus, the present formulation opens up for a

more general formulation.
In line with Eqs. (47a,b), the effective plastic stress eP associated with the damaged plastic state of the

material is introduced similarly as the effective stress,
P ¼ NPðxÞeP; ð48Þ
where NP is a (collection of) isotropic tensor(s) defined to depend on x only. For a virgin material, x ¼ 0

and P ¼ NPð0ÞeP ¼ eP.
We will now generalize the principle of strain equivalence similarly as is done for plasticity above. Thus,

we state:

If we set _x ¼ 0 and replace all effective stresses by their homogenized counterparts, the model shall degenerate

both mechanically and thermally to the corresponding thermoelastoplastic model.

With the present integrity functions, this principle of mechanical and thermal equivalence is equivalent
to requiring that the damaged model shall act in the same way as the thermoelastoplastic model if we set
_x ¼ x ¼ 0.

With x 6¼ 0, the material is expected to be ‘‘weaker’’ than the undamaged material. To allow for this,

introduce material parameters and functions that may be influenced by x, viz. eGðxÞ, eK ðxÞ, ~avðxÞ, eHeðp;xÞ
and eH�ðp;xÞ. A tilde over a symbol is here introduced to distinguish the present functions from the

parameters and functions used in the previous sections. The relations between these functions and

parameters are presently explored.

For a moment, assume that the state is given by the alternative set of state variables, s, rm, T , p and x.
For the model to react according to the mechanical aspects of the principle, the following relations shall

hold,
oeðijÞ
osðijÞ

¼ 1

2eG ;
oeij
orm

¼ 0;
oeij
oT

¼ 0;
oe

op
¼ eHe; ð49a;b;c;dÞ
o�v
osij

¼ 0;
o�v
orm

¼ 1eK ;
o�v
oT

¼ ~av;
o�v
op

¼ eH�: ð49e;f ;g;hÞ
Integration of these equations yields
eðs; p;xÞ ¼ ~eeðs;xÞ þ ~epðp;xÞ þ ~exðxÞ; ð50aÞ
�vðrm; T ; p;xÞ ¼ ~�evðrm; T ;xÞ þ ~�pvðp;xÞ þ ~�xv ðxÞ; ð50bÞ
where
~ee ¼ s

2eG ; ~ep ¼
Z p

0

eHeðp̂;xÞdp̂; ð51a;bÞ
~�ev ¼
rmeK þ ~avðT � TrÞ; ~�pv ¼

Z p

0

eH�ðp̂;xÞdp̂: ð51c;dÞ
It can be noted that, as for the thermoelastoplastic model, the strain is split into parts. Now, introduce the
effective stresses Eqs. (47a,b) into Eqs. (51a,c)
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~ee ¼ NG~s

2eG ; ~�ev ¼
NK~rmeK þ ~avðT � TrÞ: ð52a;bÞ
According to the principle, these strain components shall equal the elastic strain components of Eqs. (27a–

c) if the effective stresses are replaced by the homogenized stresses. This is achieved if
eG ¼ NGG; eK ¼ NKK; ~av ¼ av: ð53a;b;cÞ

Furthermore, according to the principle, the plastic strain components shall equal the plastic strain com-

ponents of Eqs. (36a,b). This is achieved if eHe and eH� are independent of x and given by the corresponding

functions of the undamaged model, viz.
eHe ¼ HeðpÞ; eH� ¼ H�ðpÞ: ð54a;bÞ
Finally, the principle does not allow for a ‘‘damage strain’’. Thus,
~ex � 0; ~�xv � 0: ð55a;bÞ
To sum up, the strain of the damaged material model is split according to
e ¼ ee
s

NG

� �
þ epðpÞ; �v ¼ �ev

rm

NK
; T

� �
þ �pvðpÞ; ð56a;bÞ
where the functions eeðsÞ and �evðrm; T Þ are given by Eqs. (27a–c) and the functions epðpÞ and �pðpÞ by

integration of Eqs. (36a,b). Moreover, the principle is followed if the plastic stress is replaced with the

effective plastic stress in the constitutive relation for the undamaged model, cf. Eq. (41), viz.
eP ¼ BpðpÞ � bpðpÞðT � TrÞ: ð57Þ

As indicated in Eqs. (56a,b) there is a unique relation between r, �e, T and x. The state can then be

characterised by the original set of state variables: ee, �ev, T , p, and x. With these state variables, the rate of

dissipation is given by Eq. (23) with (36a,b), (37b) and (56a,b)
q _d ¼ P � _p�X � _x; ð58Þ

where P is given by Eq. (37b). Thus, a plasticity model, with positive dissipation, is extended to a damage

model with positive dissipation, by requiring �X � _xP 0 for the damage model. If we assume the existence
of a dissipation potential M , convex in x, non-negative dissipation associated with changes in x is guar-

anteed if _x ¼ � _loM=oX with _lP 0.

To conform with the thermal aspects of the principle, the rate of heat of the damage model shall equal

the rate of heat of the undamaged model, Eq. (44), if _x ¼ x ¼ 0. Since, the rate of dissipation, in this case,

equals the rate of dissipation for the thermoelastoplastic model, it suffices that the reversible rates of heat

are equal, cf. Eq. (13). Using the effective stresses, Eqs. (47a,b) and (48), the reversible rate of heat, Eq. (26),

is written
q _q0 ¼ �TNG o~s

oT
� _ee � TNK o~rm

oT
_�ev � TNP o

eP
oT

� _p� T
oX
oT

� _xþ qT
os
oT

_T : ð59Þ
Using the constitutive relations, Eqs. (27a–c), (56a,b) and (57), this equation yields
q _q0 ¼ TNKKav _�ev þ TNPbp � _p� T
oX
oT

� _xþ qT
os
oT

_T : ð60Þ
Applying the principle and putting _x ¼ x ¼ 0 yields
q _q0j _x¼x¼0 ¼ TKav _�ev þ Tbp � _pþ qT
os
oT

				
x¼0

_T ; ð61Þ
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which conforms with the principle, cf. the three first terms of Eq. (44), if
T
os
oT

				
x¼0

¼ cev: ð62Þ
This equation allows for a damage dependent heat capacity, ~cðT ;xÞ. In principle, the part of the material

point which has undergone damage ð1� NKÞ contribute to the total heat capacity with its heat capacity at
constant pressure, i.e. cep. The remaining part of the material point ðNKÞ contribute with the heat capacity at

constant volume. That is,
q~c ¼ ð1� NKÞqcep þ NKqcev ¼ qcev þ ð1� NKÞTKa2v; ð63Þ
where we have used cep � cev ¼ TKa2v=q. Equation (62), for an arbitrary level of damage, thus takes the form
qT
os
oT

¼ qcev þ ð1� NKÞTKa2v: ð64Þ
Equations (25a–d) with Eqs. (27a–c), (56a,b) and (57) give
q
os
oee

¼ 0; q
os
o�ev

¼ NKKav; ð65a;bÞ

q
os
op

¼ NPbp; q
os
ox

¼ � oX
oT

; ð65c;dÞ
which, together with Eq. (64), yield a system of partial differential equations for the entropy. We imme-

diately recognize that the entropy is independent of the deviatoric part of the elastic strain. Integration of

Eqs. (64) and (65b,c) gives
sð�ev; T ; p;xÞ ¼ sepð�ev; T ; p;xÞ þ scðxÞ; ð66aÞ
where
qsepð�ev; T ; p;xÞ ¼ NKKav �ev
�

� �Tv
�
þ q

Z T

Tr

cevðhÞ
h

dhþ Kav�Tv þNP

Z p

0

bpðp̂Þdp̂: ð66bÞ
The function sep is associated with the level of stress, temperature and plastic deformation. It is thus de-
noted the elastoplastic part of the entropy. The second function sc is an, as yet, unspecified function of

damage. It is here interpreted as corresponding to the cohesive entropy of microscopic cracks and voids.

The split of the entropy in two parts according to Eq. (66a) suggests a similar partitioning of the corre-

sponding damage stress, cf. Eqs. (22d) and (25d), in an elastoplastic and a cohesive part according to
X � �Xep þXc; ð67aÞ
where
oXep

oT
¼ q

osep

ox
¼ dNK

dx
Kavð�ev � �Tv Þ þ

dNP

dx

Z p

0

bpðp̂Þdp̂; ð67bÞ
and
oXc

oT
¼ �q

oscðxÞ
ox

: ð67cÞ
Thus, the cohesive damage stress, Xc, is at most a linear function of the temperature. The unconventional
sign for the elastoplastic damage stress, Xep, in Eq. (67a) is chosen in order to get an essentially positive
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value of Xep. To elucidate the resemblance with the plastic stress, cf. Eq. (41), we recognize that

Xc ¼ XcðT ;xÞ and write
Xc ¼ BcðxÞ � bcðxÞðT � TrÞ: ð68Þ
The new functions Bc and bc have to be determined by comparisons with, for example, experiments or

simulations. Differentiation and integration according to Eq. (67c) gives
qsc ¼
Z x

0

bcðx̂Þdx̂: ð69Þ
For completeness, the rate of heat is written
q _q ¼ TNKKav _�ev þ q~c _T þ ðTNPbp �PÞ � _p

þ T
dNK

dx
Kavð�ev

�
� �Tv Þ þ T

dNP

dx

Z p

0

bpðp̂Þdp̂þ Tbc þX

�
� _x; ð70Þ
where Eqs. (13), (60), (64), (67a–c) and (68) have been used.

All partial derivatives of the free energy are now given by Eqs. (20) and (22a–d) with Eqs. (27a–c),
(47a,b), (48), (56a,b), (57), (65a) and (68). Integration yields
f ðee; �ev; T ; p;xÞ ¼ f epðee; �ev; T ; p;xÞ þ f cðT ;xÞ; ð71aÞ
where
qf ep ¼ NGGee � ee þ 1

2
NKKð�ev � �Tv Þ

2 � q
Z T

Tr

T � h
h

cevðhÞdh�
1

2
K �Tv
� �2

þNP

Z p

0

Bpðp̂Þdp̂



� ðT � TrÞ
Z p

0

bpðp̂Þdp̂
�
; ð71bÞ
and
qf c ¼
Z x

0

Bcðx̂Þdx̂� ðT � TrÞ
Z x

0

bcðx̂Þdx̂; ð71cÞ
where the arbitrary integration constant is set by requiring f ð0; 0; Tr; 0; 0Þ ¼ 0. We can now compare the

derived version of the free energy, Eqs. (71a–c), and the ad hoc versions, Eqs. (2) and (3). The most obvious
difference is the new term f c. This term opens up new possibilities in CDM, namely to model healing in an

integrated manner. This is demonstrated in one of the examples in the next section. The term, f ep, yields the

effect of temperature on the free energy; this effect is not present in Eqs. (2) and (3). Moreover, Eqs. (71a–c)

yield the specific and possible form of the effects of elastic strain, temperature, plastic and damage internal-

variables consistent with assumptions of the behaviour of the material. It can easily be seen that both

Eqs. (2) and (3) can be retained with suitable choices of integrity functions.

The elastoplastic part of the damage stress is finally given by differentiation of Eq. (71b) according to

Eqs. (22d) and (67a).
Xep ¼ � dNG

dx
Gee � ee � 1

2

dNK

dx
K �ev
�

� �Tv
�2 � dNP

dx

Z p

0

Bpðp̂Þdp̂



� ðT � TrÞ
Z p

0

bpðp̂Þdp̂
�
: ð72Þ
This ends the derivation of a thermodynamically consistent framework for development of constitutive

laws. Some capabilities of the framework will be demonstrated in Section 4.
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4. Examples

In this section, the general relations derived above are used to demonstrate some of the capabilities of the

framework for developing constitutive laws. The examples should be regarded as simplified illustrations
and not full-fledged constitutive models. In order to emphasize the structured method to develop consti-

tutive models, both examples start from the same model for a thermoelastic material. In the first example,

this model is modified to introduce plasticity and in the second example, the thermoelastic model is

modified to model creep damage. We will simplify as much as possible and limit the example to a uniaxial

theory. Thus, with customary notation
r ¼ Eð�e � �TÞ; where �T ¼ aðT � TrÞ; ð73a;bÞ

governs the elastic behaviour. With a constant heat capacity, c, the elastic parts of the entropy and free

energy are given by
qse ¼ Ea�e þ qc ln
T
Tr
; ð74aÞ

qf e ¼ 1

2
E�eð�e � 2�TÞ � qc T ln

T
Tr

�
� ðT � TrÞ

�
: ð74bÞ
Moreover, the rate of heat, Eqs. (29) and (30), is given by
q _q ¼ TEa_�e þ qc _T : ð75Þ

In an isothermal process ð _T � 0Þ, the rate of heat is thus, q _q ¼ TEa_�e and, in most cases (with a > 0), heat

has to be supplied proportionally with the elastic strain to keep the temperature constant. Moreover, in a

finitely sized body, the process has to be ‘‘infinitely’’ slow in order for the temperature to be constant, cf. the

discussion in the preamble to Section 3.1. In an adiabatic process ð _q � 0Þ, Eq. (75) shows that the rate of

temperature is proportional to the rate of elastic strain, viz. _T ¼ �TEa_�e=ðqcÞ. Thus, in most cases (with

a > 0), the temperature decreases with increasing elastic strain. It is interesting to study the difference in

apparent elastic stiffness in an isothermal and adiabatic process. Equations (73a,b) yield the stress rate for
an isothermal process while the same equations, with the the rate of temperature above, yield the stress rate

for an adiabatic process, viz.
_�iso ¼
_r
E
; _�ad ¼

_r
Ead

; ð76a;bÞ
where Ead ¼ E½1þ a2ET=ðqcÞ� is the ‘‘adiabatic’’ elastic modulus. Thus, the adiabatic process leads to a

somewhat larger stiffness. In most cases, the difference is not large.

4.1. Elastoplastic model

Introducing one scalar internal variable for the plasticity, p, the plastic strain rate is given by a one-

dimensional version of Eq. (36b). Here, the simplest possible form is chosen
_�p ¼ _p: ð77Þ

For simplicity, we choose the plastic stress, cf. Eq. (41), according to
P ¼ Ep½p � apðT � TpÞ�; ð78Þ

where Ep and ap are constants. The plastic dissipation stress, Eq. (37b), reduces to
P ¼ r� P ; ð79Þ
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We will now chose a yield criteria. In models of associated plasticity, this is the same as the dissipation

potential. It shall therefore be a convex function of the plastic dissipation stress in order to secure positive

dissipation, cf. Eq. (37a) and the discussion following it. A suitable yield criteria is
F ðPÞ � jPj � rY ¼ 0; ð80Þ

where rY is a constant. With Ep > 0, linear kinematic hardening is modelled. With Ep ¼ 0 ideal plasticity

results. With ap 6¼ 0, a temperature dependent yield stress is accomplished. It is interesting to note that this

is associated with a plastic part of the entropy. This is seen from Eq. (43), which in this case yields
qsp ¼ Epapp: ð81aÞ

The plastic part of the free energy, Eq. (45), reduces to
qf p ¼ 1

2
Epp2 � EpapðT � TpÞp: ð81bÞ
With the present dissipation potential, Eq. (80), the rate of the internal variable is
_p ¼ _k
dF
dP

¼ _k signðPÞ; ð82Þ
where signðPÞ denotes the sign of P and _kP 0. During plastic deformation, the yield condition, Eq. (80),

must hold. Thus, _r ¼ _P , which with Eqs. (78) and (82) yields _ksignðPÞ ¼ _r=Ep þ ap _T . Now, with Eqs. (77)

and (82), the plastic strain rate is given by
_�p ¼ _r
Ep

þ ap _T : ð83Þ
The total strain rate is given by the sum of the elastic and plastic strain rates Eqs. (35a,b). With Eqs. (73a,b)

and (83) the strain rate is
_� ¼ _r
ET

þ aT _T ; ð84aÞ
where
1

ET

� 1

E
þ 1

Ep

; and aT � aþ ap; ð84b;cÞ
are the elastoplastic tangent stiffness and coefficient of thermal expansion respectively. It may be noted that

the plastic part of the entropy Eq. (81a) is associated with a ‘‘plastic’’ contribution to the thermal strain rate

ðap _T Þ. It should be noted that a thermally dependent plastic stress ðP Þ inevitably results in a plastic part of
the thermal strain rate ðap _T Þ. This part appears unphysical.

For the present model, the rate of heat, Eq. (44), reduces to
q _q ¼ TEa_�e þ qc _T � signðPÞrY

�
� TEpap



_�p: ð85Þ
For isothermal elastoplastic deformation, the strain rate is given by the first term in Eq. (84a)
_�iso ¼
_r
ET

: ð86aÞ
For an adiabatic elastoplastic deformation the rate of the temperature can be calculated by setting Eq. (85)
equal to zero. The result is
_T ¼ TaT � signðPÞrY=Ep

TEa2 þ TEpa2p � signðPÞrYap þ qc
_r: ð86bÞ
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The strain rate is then given from Eq. (84a) by
Fig. 4.

r ¼ 18

specim
_�ad ¼
_r

ET;ad

; ð86cÞ
where
1

ET;ad

¼ 1

E
þ 1

Ep

� TaT � signðPÞrY=Ep

TEa2 þ TEpa2p � signðPÞrYap þ qc
: ð86dÞ
Thus, the adiabatic tangent modulus can be smaller, larger or equal to the isothermal tangent modulus
depending on the relative size of the different terms in Eq. (86d). Moreover, the tangent stiffness is not

constant but changes due to the changing temperature.

4.2. Elastodamaged material

The elastic model is now modified to introduce creep damage. In order to simplify, no plasticity is

considered, and only one scalar damage variable is introduced. Moreover, only isothermal processes are

considered. With these limitations, the elastoplastic damage stress, Eq. (72), reduces to
Xep ¼ 1

2
E�2 ¼ ~r2

2E
¼ r2

2Eð1� xÞ2
: ð87aÞ
The following form of the cohesive damage stress, Eq. (68), is considered
Xc ¼ Ecx; ð87bÞ

where, Ec is a constant. A convex damage surface is chosen as
MðXÞ ¼ X2

2E
¼ ð�Xep þ XcÞ2

2E
; ð88Þ
where the normalization (the denominator 2E) is chosen to give physically consistent dimensions. The

damage rate is now calculated from the damage surface according to
_x ¼ � dM
dX

¼ �X
E
¼ r2

2E2ð1� xÞ2
� Ec

E
x; ð89Þ
which shows that both tensile and compressive stress produces an increase of damage. This is usually

considered as non-physical. It can be remedied by introducing an additional condition for _x > 0, namely

rP 0. We will here only consider tensile stress. Moreover, Eq. (89) shows that r must be larger than some

criteria to produce _x > 0. If r > ðE=2Þ
ffiffiffiffiffiffiffiffiffiffi
Ec=E

p
, _x will always be positive for a constant stress.

Figure 4 shows the accumulation of damage and (elastic) strain during a ‘‘creep test’’ with a constant
stress. Both damage and strain increase with an accelerating rate until fracture is predicted at tR ¼ 1292.
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Accumulation of creep damage (left) and strain (right) during a creep test using the following data: E ¼ 1000, Ec ¼ 0:8,

:5. The time to creep rupture is tR ¼ 1292 (solid lines). The dashed lines corresponds to an interrupted creep test where the

en is unloaded at the time t ¼ 800. The strain immediately decrease to zero and the damage slowly heals.
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Fig. 5. Accumulation of creep damage (solid line) and life-fraction (dashed line) during a creep-fatigue test using the following data:

E ¼ 1000, Ec ¼ 0:8, r alternating between 18.5 and zero during Dt ¼ 250 for each stress level. The time to fracture is tU ¼ 4081 while

the life-fraction rule gives tRo ¼ 2542.
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The dotted lines show the evolution of damage and strain if the stress is set to zero for tP 800. As visible in

the damage graph, x heal after this point. The damage will eventually heal completely. As expected, the

strain equals zero for t > 800 since no plasticity is considered.

In a creep-fatigue test, the stress is altered. A simple, engineering method to calculate the life during

alternating loading is provided by Robinson’s life-fraction law, cf. Robinson (1952),
Z tRo

0

dt
tR½rðtÞ�

¼ 1; ð90Þ
where tRðrÞ is the time to fracture under the constant stress r and tRo is the time to fracture under alter-

nating stress according to the life-fraction rule. As noted already by Odqvist and Hult (1962), the Kachanov

damage concept implies the Robinson life-fraction rule. It has also been noted that the life-fraction law

sometimes underestimates the life, tU, cf. e.g. Jansson (1985).

Figure 5 shows a test where the stress varies between the levels r ¼ 18:5 and zero. The periods of positive

stress and zero stress are the same, namely Dt ¼ 250. Material data are the same as used in the creep test. As

shown in Fig. 5, fracture is predicted for tU ¼ 4081 which can be compared to the result using the life-fraction

law, tRo ¼ 2542. The result shows the new capability, implicit in the present formulation, to model materials
that do not follow simple life-fraction relations. Similar results can be achieved with time-independent

models to give the number of load-cycles to fracture that do not follow the Palmgren–Miner life-fraction rule.
5. Discussion and conclusions

Starting with the simplest possible model for isotropic, small strain thermoelasticity, a framework for the
systematic development of models of plasticity and damage is developed. The thermoelastic model employs

constant values of the elastic moduli (K and G) and a constant value of the thermal expansion coefficient

ðavÞ. From a mechanical point of view, this is the simplest possible model capable of modelling straining

due to variations in stress and temperature. It is shown that the heat capacity for this model can, at most, be

a function of the temperature, cevðT Þ.
The thermoelastic model is first extended into a model for thermoelastoplasticity by introducing internal

variables (p) describing the state of internal rearrangement due to plastic deformation. Similarly as in

earlier work we assume that the response of the model equals that of the thermoelastic model if p is
constant, cf. e.g. Rice (1971). Under these assumptions, the total strain, the (Helmholtz) free energy and the
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entropy split into thermoelastic and thermoplastic parts, cf. Eqs. (35a,b) and (38a,b). It should be noted

that this kind of split is allowed for the free energy and the entropy with fewer restrictions on the material

parameters than the ones used here. Rosakis et al. (2000) show that it suffices that the specific heat and the

stress only depend on the elastic strain and the temperature. In the present paper, the plastic strain and the
entropy are shown to be independent of all state variables except p. The plastic part of the free energy is also

shown to depend on p and, at most, to be a linear function T , cf. Eq. (45). The plastic stress P is shown to be

dependent of p and to be, at most, a linear function of T , cf. Eq. (41). Two functions (Bp and bp) of p have

to be given to formulate the dependence. It is noted that a model with temperature independent P does not

produce a permanent change in entropy. The dissipation of the thermoelastoplastic model is derived, cf.

Eq. (37a). In this equation the plastic dissipation stress P is identified. A convenient method to secure a

positive dissipation is to introduce a function F , convex in P, from which the direction of evolution of p is

determined, i.e. _p ¼ _koF =oP, with _kP 0 for time-independent plasticity or, _p ¼ oF =oP, for creep. A simple
example of a time-independent model is provided in Section 4. The model includes a temperature dependent

plastic stress. The result is a temperature dependent stress at which yielding start, cf. Eqs. (78)–(80).

In high speed deformation of metals, special consideration is given the fraction b of the rate of plastic

work, q _wp � r � _�p ¼ s � _ep þ rm _�
p
v, converted into inelastic heating, cf. e.g. Rosakis et al. (2000). The

inelastic part of the rate of heat is identified from Eqs. (29) and (44) as q _qp ¼ Tbp � _p�P � _p. With

Eqs. (36a,b) the ratio is given by
b � _qp
_wp

¼ Bp þ Trb
p

s �He þ rmH
� � 1 ð91Þ
Thus, b is generally a function of all the state variables. A result which appears to be in good agreement

with experimental results.
Isotropic damage is introduced into the model according to a principle of mechanical and thermal

equivalence, cf. Section 3.3. Both the stress and the plastic stress are complemented with the effective stress, ~r,
and the effective plastic stress, eP, through integrity functions only dependent on the state of damage ðxÞ, cf.
Eqs. (46) and (48). For an isotropic model, it is shown that only two independent scalar integrity functions

can be introduced for the stress. It should be noted that, in this formulation, x do not need to be a scalar

variable. This result may be viewed as a generalization of the results of Cauvin and Testa (1999). Their

representation is however limited to scalar damage variables. With this limitation, isotropic damage can be

modelled using, at most, two scalar damage variables. The present formulation opens upmore freedom in the
modelling. For instance, if constitutive properties are to be determined from simulations,x can be chosen as a

set of parameters determining the geometry of voids and microcracks in a representative volume element.

As shown in Eq. (58), the present principle yields a convenient split of the dissipation in two parts; one

part associated with the thermoelastoplastic model and one part associated with the extension of this model

to damage. Thus, a thermoelastoplastic model does not need to be reformulated before it is extended to

CDM.

The present principle yields a strain split, viz. the total strain is divided into elastic and plastic parts. No

strain component corresponding to the state of damage is allowed, although the elastic strain is affected by
the state of damage through the integrity functions. It should here be recognized that a strain component

corresponding to damage, i.e. �x, would lead to severe experimental problems in order to distinguish it from

the plastic strain component, �p. The kinematic relation between p and the plastic strain is shown to be

unaffected by the introduction of damage, cf. Eqs. (54a,b). However, the development of damage will

normally affect the elastic strain and the accumulation of plastic strain through the damage-dependence of

the stress and the plastic stress. As noted by Ju (1989), the added flexibility due to the introduction of

damage is implicitly imbedded in this kind of strain split.

The free energy of the damage model is derived and shown to be split in two parts, the elastoplastic free
energy and the cohesive free energy, cf. Eqs. (71a–c). Both parts depend on the damage. The first part
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consists of the free energy of the undamaged model modified through the integrity functions. This part can

be brought to coincide with different ad hoc forms of the free energy through different choices of integrity

functions. With one scalar damage variable and with NG ¼ NK ¼ NP ¼ 1� x a free energy corresponding

to the models by Ju (1989) and Edlund and Klarbring (1993) results. With NP equal to an identity tensor, a
free energy similar to models by Lemaitre (1985) results. The cohesive part of the free energy is not present

in other models; this part is the one that facilitates treatment of healing processes as well as deteriorating

processes with positive dissipation. By use of the principle, it is shown that the cohesive part of the free

energy only depends on the state of damage and the temperature, cf. Eq. (71c). The dependence is generally

given by two functions (Bc and bc) of the state of damage. The temperature dependence is, at most, linear.

Similarly as for the thermoelastoplastic model, the entropy of the damaged model is split in two parts, an

elastoplastic part that is identified as the entropy of the undamaged model modified by the state of damage,

and a cohesive part only dependent on the state of damage, cf. Eqs. (66a,b) and (69).
The formulated principle leads to a split of the damage stress into an elastoplastic damage stress, Xep,

and a cohesive damage stress, Xc. According to the principle, both Xep and Xc are, at most, linear in the

temperature. The elastoplastic damage stress corresponds to the damage energy release-rate of the models

described in the introduction. The cohesive damage stress, on the other hand, is a novelty of the present

formulation. It can be interpreted as corresponding to the cohesive energy absorbed by the microscopic

cracks and voids responsible for the damage. In order to increase damage, the release of elastoplastic

energy must overcome the absorbed cohesive energy. On the other hand, in order to decrease damage

(healing), the release of cohesive energy must overcome the absorbed elastoplastic energy. If the absorbtion
equals the release, damage evolution is reversible and will not produce dissipation nor permanent damage,

i.e. the damage will heal upon unloading. This situation resembles the growth of a Griffith-crack where the

size of the crack is always in thermodynamic equilibrium with the acting loads, cf. e.g. Lawn (1993). By

requiring that �X � _x > 0, dissipation is related to the deteriorating or healing process and the process is

irreversible. There are different ways to assure that the dissipation is non-negative for all possible situa-

tions. Within the notion of a Generalized Standard Material, e.g. Nguyen (2000), a convex dissipation

potential M is defined such that _x ¼ � _loM=oX with _lP 0 for time-independent damage or _x ¼ �oM=oX
for creep damage.

It is argued in Section 3.3 that the heat capacity depends on damage in a specific way, cf. Eq. (63). It is

interesting to note that if we had chosen a damage independent heat capacity, or used an integrity function

to define an ‘‘effective’’ heat capacity, a non-intuitive elastoplastic damage stress would result. The second

term in Eq. (72), here giving no contribution if �Tv ¼ �ev or equivalently if rm ¼ 0 (cf. Eq. (27b)), would give a

contribution to Xep proportional to �evð�ev � 2�Tv Þ with any of the other choices of heat capacity. Thus, Xep

would be non-zero with r ¼ p ¼ 0.

It should also be stressed that the cohesive part of the entropy, sc, is, at most, a function of x. The fact

that the cohesive part of the entropy is independent of the temperature is a consequence of using integrity
functions which are functions of the damage variables only. It can also be noted that a damage model with

temperature independent damage stress, i.e. bc ¼ 0, must have sc � 0. Growth of damage will, for such a

model, not be accompanied with a change of the cohesive part of the entropy. However, with at least one of

av, b
p or cev non-zero, the thermoelastoplastic part of the entropy may change, cf. Eq. (66b).

A simple example of a time-dependent damage model is provided in Section 4. The example shows time-

dependent healing at unloading. It is shown that this feature provides a possibility to model materials that

do not follow the simple life-fraction rules of Palmgren, Robinson and Miner.
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